

中國科官院分子推物科官卓越创於中心 植物生理生态研究所

CAS Center for Excellence in Molecular Plant Sciences

Institute of Plant Physiology and Ecology

See the details in vivo

the application of micro-imaging in plant science

Wenjuan Cai / Core Facility of CEMPS / June 9th, 2021

Importance of micro-imaging: see the details in vivo

Zhang TQ. et al., The Plant Cell. 2017

Different micro-imaging systems: z-axis resolution

Laser Scanning Confocal-Classical and universal

2D/3D imaging Colocalization FRAP FRET Spectral unmixing

Laser Scanning Confocal Keywords: pinhole

Pinhole: nice z-axis resolution Scanner + detector: images with point scanning Smart photon manipulation: ZOOM and FRAP Spectral imaging: autofluorecense and spectral unmixing.

2D imaging of the interested focus

3D reconstruction: z-stacks and reconstruction

Attention: no overexposure no crosstalk

Shi BH et al., Developmental Cell. 2018

Colocalization analysis

Pearson's value/Manderson's value/Line profile

FRAP: Fluorescence Recovery After Bleaching

to study the molecular kinetics

Sample: nucleus of Arabidopsis root cells 5 cycles—bleach with 488 laser—150 cycles with 3s interval. Total duration time: 7min30s White ROI: bleaching area, Green ROI: no-bleaching area as a control.

FRET: Förster Resonance Energy Transfer

- CFP - CaM

- M13

- YFP

When CaM combined with Ca²⁺, the protein complex will fold and make CFP close enough to YFP. Then the FRET occur and YFP signal will be brighter.

Application note of YC3.6

High temporal and spatial resolution of calcium dynamics with CLSM

Application note of protein interaction with FRET

Spectrum: autofluorescence and spectral unmixing

Oryza

Cryptomeria

Jing-Shi Xue, Baocai Zhang, HuaDong Zhan, Yong-Lin Lv, Xin-Lei Jia, TianHua Wang, Nai-Ying Yang, Yu-Xia Lou, Zai-Bao Zhang, Wen-Jing Hu, Jinshan Gui, Jianguo Cao, Ping Xu, Yihua Zhou, Jin-feng Hu, Laigeng Li, Zhong-Nan Yang

Actinidia

Α

Molecular

EMPS

Plant

TIRF system – cell surface/membrane

Only focus on the signals at cell surface Highest z-axis resolution Sensitive: nice for weak signal

Typical application: Autophagy/vesicle tracking/membrane kinetics...

TIRF application: single-molecule imaging

Single-molecule imaging shows ZAR1 oligomerization at cell surface

Keywords: monomeric EGFP TIRF imaging Spots tracking MSD analysis

Figure 4. Single-molecule imaging shows ZAR1 oligomerization at cell surface (A) Live-cell TIRF imaging of the bottom surface of protoplasts co-expressing ZAR1-mEGFP

Bi GZ et al., Cell, 2021

What is TIRF? Why only cell surface were imaged?

Figure 4. Single-molecule imaging shows ZAR1 oligomerization at cell surface (A) Live-cell TIRF imaging of the bottom surface of protoplasts co-expressing ZAR1-mEGFP

TIRF application in plant science: vesicles/spots at the cell surface

GFP-ROP6 appeared in diffraction-limited spots at the cell surface after osmotic treatment Smokvarska M et al., Current Biology, 2020 A CEMPS

Arabidopsis root cell surface

488 TIRF imaging

Spinning disk confocal – fast confocal

Low photon-toxicity: long-term imaging Fast imaging speed: ms Sensitive: weak signal detection

LLPS/autophagy/calcium spikes etc...

Application: LLPS-related research

Spinning disk confocal data

Clifford P. Brangwynne and Anthony A. Hyman reported LLPS (Liquid-Liquid Phase Separation) for the first time in 2009.

Application in plant science

EMB1579 control transcription and pre-mRNA splicing through phase seperation

LLPS in vivo

FRAP in vivo

Pre-bleach

.36 s

Zhang Y et al., PLOS BIOLOGY, 2020

Autophagy vesicles tracking in arabidopsis root cells

1 fps for 90s with spinning disk confocal

Green: autophagy marker Red: FM4-64

Vesicles tracking in arabidopsis leaf cells

+ 0-00-0

1 fps for 90s with spinning disk confocal Green: autophagy marker

Calcium spiking in arabidopsis root cells

0.5 fps for 310s with spinning disk confocal Green: Calcium marker

t (offset corrected): Os

 $\overline{\ }$

Different micro-imaging systems: z-resolution

Summary

 Laser scanning confocal: classical technique and fit for most samples, most smart system. Pinhole: optical sectioning, nice for 3D structure
 Scanning: nice for ZOOM, FRAP and FRET
 Spectrum: nice for multi-color, FRET, spectral scanning and unmixing

 TIRF system: very thin excitation region, highest z-resulution only excite the cell surface/membrane signal, clear particle/vesicle imaging

Spinning disk confocal: fast, low photon-toxicity Fast imaging: calcium spiking/autophagy/LLPS EMCCD: nice for very weak signal Low photon-toxicity

Other important techniques

Two-photon system: deep and live Lightsheet: deep FLIM imaging: another dimension Super resolution: nice xy resolution SRS imaging: without label

Hardware:

3 sets of Laser Scanning Confocal: Leica SP8/Zeiss LSM880/Olympus FV1000
1 set of Spinning disk Confocal: Andor spinning disk
1 set of TIRF system: Olympus dual-line TIRF
3 sets of super-resolution systems: Zeiss LSM880 Airyscan /GE OMX/ Leica SP8 STED

1 set of Leica Stellaris5 (Confocal combine with lightsheet)

Software for image processing and analysis: iMaris: convenient for 3D image data FIJI: strong tool for 2D images and usual 3D data processing, free

Thanks for Your Time and Attention!

分子植物中心 公共技术服务中心

Welcome for questions through wechat/email/phone...!